Connectional topography in the zebrafish olfactory system: random positions but regular spacing of sensory neurons projecting to an individual glomerulus.
نویسندگان
چکیده
It is unknown how neuronal connections are specified in the olfactory system. To define rules of connectivity in this system, we investigated whether the projection of sensory neurons from the olfactory epithelium to the olfactory bulb is topographically ordered. By backtracking with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), we find that neurons projecting into a single identified glomerulus are widely dispersed over the olfactory epithelium. Their positions in the sensory surface do not predict their glomerulus specificity and are probably random. A statistical analysis reveals that neurons connected to the same glomerulus are spaced at distances of several cell diameters from each other. The convergence of projections to one point in the target area from neurons that are widely and evenly distributed in the sensory surface constitutes an unusual type of connectional topography that contrasts with the precise topological (neighborhood-preserving) maps found in other sensory systems. It may maximize the probability to detect odorants that activate a single glomerular unit.
منابع مشابه
Kappe neurons, a novel population of olfactory sensory neurons
Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron po...
متن کاملPii: S0166-2236(03)00037-7
The olfactory system permits animals to recognize and discriminate a vast number of different odorous molecules. This sensitivity is achieved by the selective expression of a single odorant receptor, specific to a small subset of the universe of odors, in each olfactory sensory neuron [1,2]. The topography of synaptic connections at the first relay in the olfactory system is organized according...
متن کاملIdentification of accessory olfactory system and medial amygdala in the zebrafish
Zebrafish larvae imprint on visual and olfactory cues of their kin on day 5 and 6 postfertilization, respectively. Only imprinted (but not non-imprinted) larvae show strongly activated crypt (and some microvillous) cells demonstrated by pERK levels after subsequent exposure to kin odor. Here, we investigate the olfactory bulb of zebrafish larvae for activated neurons located at the sole glomeru...
متن کاملA single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine
The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stim...
متن کاملSpatial Representation of the Glomerular Map in the Drosophila Protocerebrum
In the fruit fly, Drosophila, olfactory sensory neurons expressing a given receptor project to spatially invariant loci in the antennal lobe to create a topographic map of receptor activation. We have asked how the map in the antennal lobe is represented in higher sensory centers in the brain. Random labeling of individual projection neurons using the FLP-out technique reveals that projection n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 24 شماره
صفحات -
تاریخ انتشار 1994